TOBACCO RESEARCH INSTITUTE OF TANZANIA (TORITA)

11111

EVALUATION OF MINJINGU FERTILIZERS IN TOBACCO PRODUCTION FOR TOBACCO FARMERS OF TABORA URBAN, UYUI AND SIKONGE DISTRICTS

JUNE, 2019

TABLE OF CONTENTS

ABSTRACT v
1.0 INTRODUCTION
2.0 EVALUATION OF MINJINGU FERTILIZERS FOR FARMERS
3.0 OBJECTIVES
3.1 General objective
3.1.1 Specific objectives
4.0 STUDY AREA
5.0 MATERIALS AND METHODS
6.0 RESULTS AND DISCUSSION
6.1 Nutrient analysis in Minjingu Golden Leaf Tobacco (NPK 10:18:24) and Minjingu top dressing CAN 27%
6.1.1 Specifications for flue cured tobacco 4
6.1.2 Specification for CAN 27% N as a top dressing fertilizer in flue cured tobacco
Specification guidelines;
6.1.3 How Minjingu fertilizers are manufactured5
6.1.4 Source of Nitrogen in Minjingu NPK 10:18:246
6.1.5 Source of Phosphorous (P) in Minjingu NPK 10:18:246
6.1.6 Source of Potassium (K) in Minjingu NPK 10:18:246
6.1.7 Source of Nitrogen in (N) in minjingu top dressing CAN 27%
6.2 Assessment of tobacco plant growth in the field before reaping7
6.2.1 Recommended soil for tobacco production7
6.2.2 Reasons of Minjingu fertilizer to have good performance in loam soil (Ferralic Cambisols, Rhodic Ferralsols)
6.2.4 Leaf length and width of tobacco leaves fertilized with Minjingu fertilizer in sandy and loam soil
6.2.5 Number of leaves per plant
6.3 Ripening rate and leaf curing9
6.3.1 Ripening rate
6.3.2 Leaf curing
6.4 Quality of grades and their prices

6.5 Determination of nicotine, chlorine, sugar, nitrogen, phosphorus, potassium, calcium, magnesium, Samples of dry tobacco leaves were taken and sent to laboratory to determine the amount of nicotine, 6.6 Determination of aroma of tobacco produced by Minjingu Golden Leaf and Minjingu top dressing

LIST OF TABLES

Table 1: Distribution of Golden leaf tobacco and Minjingu Top dressing fertilizers	2
Table 2: Laboratory analysis results of Minjingu fertilizers	3
Table 3: Manufacturing of NPK – Minjingu	5
Table 4: Nutrients analysis results of dry tobacco leaves	. 18

LIST OF CHARTS

Chart 1: Grade distribution versus price for Ilalwansimba AMCOS farmers who used Minjingu fertilizer . 10
Chart 2: Grade distribution versus price for Ilalwansimba AMCOS farmers who used YARAfertilizer 11
Chart 3: Top quality grade distribution versus weight for Ilalwansimba AMCOS farmers who used Minjingu fertilizer
Chart 4: Top quality grade distribution versus weight for Ilalwansimba AMCOS farmers who used YARA fertilizer

Chart 5: Grade distribution versus price for Kigwa Makazi AMCOS farmers who used Minjingu fertilizer14

Chart 6: Grade distribution versus price for Kigwa Makazi AMCOS farmers who used Minjingu fertilizer15
Chart 7: Grade distribution versus price for Kigwa kijiji AMCOS farmers who used Minjingu fertilizer 16
Chart 8: Grade distribution versus price for Mibono AMCOS farmers who used Minjingu fertilizer
Chart 9: Results of nicotine content for bottom and top leaves in Magengati and Ibelamilundi 19
Chart 10: Results of reducing sugar content for bottom and top leaves in Magengati and Ibelamilundi 20
Chart 11: Results of reducing sugar content for bottom and top leaves in Magengati and Ibelamilundi 21
Chart 12: Results of boron content for bottom and top leaves in Magengati and Ibelamilundi

LIST OF APPENDICES

Appendix 1: Types of soil used for tobacco production in Tabora region	31
Appendix 2: Leaf area for tobacco produced in sand and loam soil	33
Appendix 3: Types of soil in primary societies which used Minjingu fertilizer	35
Appendix 4: Grade prices for 2018-219 crop season	36
Appendix 5: Sufficiency ranges for macro and micro nutrients in flue cured tobacco leaves	37
Appendix 6: Dry tobacco leaves analysis results	38
Appendix 7: Minjingu fertilizer laboratory analysis results	39

ABSTRACT

Evaluation of Minjingu fertilizer started in 2017/2018 crop season in Tumbi – Tabora, Ushetu, Urambo and Chunya and it proceeded as on farm trial for 2018/2019 crop season in Tabora municipal, Uyui and Sikonge districts. The general objective was to assess yield and quality of tobacco produced by Golden leaf tobacco and Minjingu Top dressing fertilizers. The research was conducted by assessing tobacco in the field, during curing and determining tobacco grades and their value. Furthermore, samples of fertilizers and cured tobacco leaves were taken to laboratory for analysis of total alkaloids, reducing sugar and other elements. Results indicates that there was low nutrients in Golden leaf tobacco (NPK 10:18:24) and Top dressing fertilizer (CAN 27%) compared to the recommended nutrients required for tobacco plant nutrition. Dry leaf analysis indicates that there was high concentration of sulphur (0.7%) and low concentration of reducing sugar and nicotine which was 0.79% and 1.82% respectively which had negative effect on aroma of tobacco. There was slow nutrient release from Minjingu fertilizers which led failure of tobacco plants to absorb the nutrients at the right time hence low yield and leaf area especially for tobacco grown in sandy soil. Ripening rate for tobacco fertilized with Minjingu fertilizer was the same as the tobacco fertilized with YARA fertilizer. The average ripening rate after between harvests were four days for Primings, Lugs and Cutters and five days for Leaf. Number of days to accomplish one curing was the same for tobacco fertilized with Minjingu and that fertilized with YARA. For light tobacco it took five days to accomplish one curing and seven days to accomplish one curing for heavy tobacco. Tobacco grade distribution analysis indicates that, tobacco fertilized with YARA had 18.75% of top quality grades while tobacco fertilized with Minjingu produced 2.94% of top quality grades. Tobacco fertilized with Minjingu fertilizer in loam soil had tobacco with large leaf area compared to tobacco fertilized by Minjingu in sandy soil. Ninty percent (90%) of the interviewed farmers proposed that Minjingu fertilizer should be improved in order to be used in tobacco production. It is better Minjingu mines to look for other sources of Nitrogen that are recommended for tobacco production so that it can be easily absorbed by the plant. Ammonium nitrate is the best source of Nitrogen for tobacco plant nutrition. Rock phosphate (MOHP – PW) has slow nutrient release especially in sandy soil. The use of hydroxyl acids combined with calcium and iron could help to dissolve rock phosphate so that phosphate could be readly available to plant. Muriate of potash (MOP) require to be blended with other sources of potassium fertilizer by the ratio that could reduce the amount of chlorine in the fertilizer, it is recommended that the amount of chlorine that could be released should not exceed 13.6 kg/acre. Good source of Potassium for tobacco production is sulphate of potash (SOP) because contains no Chloride and hence has much lower salt index, also K-Mag (Sul-Po-Mag) is prefered because it release enough amount of Magnesium 11% and Sulphur 22% at the same time releasing little amount of Cl which is below 2.5%. Other source of K is Poatassium Nitrate. Futhermore Minjingu Mines and Fertilizer Company Ltd did not follow recommendations in the evaluation report of 2017/2018 crop season which required them to follow recomended specifications for tobacco plant nutrition requirements this is due to the fact that Minjingu fertilizer had nutrients below recommended specifications.

1.0 INTRODUCTION

Minjingu Organic Hyper Phosphate+ is a natural fertilizer. It has primary nutrients of Nitrogen, Phosphorus and Pottassium. Also it has Silica and Calcium which enhance availability of Phosphorus in the soil.

Calcium helps to reduce soil acidity and Silica helps to strengththen plant towards pests and diseses resistance (www.minjingumines.com).

For 2018/19 crop season TORITA did evaluation of Minjingu fertilizers in tobacco production. These fertilizers were; NPK 10:18:24 (Golden leaf tobacco) and CAN 27% (Minjingu top dressing fertilizer). Application rates were the same as those recommended for tobacco production which is 30 gram per plant for basal application and 8 gram per plant for top dressing fertilizer. The evaluation was done by comparing the performance of Minjingu fertilizers versus YARA NPK 10:18:24 and CAN 27% which was used as control

2.0 EVALUATION OF MINJINGU FERTILIZERS FOR FARMERS

TORITA which is an institute responsible to solve various challenges faced by tobacco farmers, received complaints from farmers regarding the use of Minjingu fertilizers in tobacco production. The complaints were; tobacco fertilized with Minjingu fertilizer had poor performance in the field. In order to clear doubts, TORITA by using team of its specialists visited some of the tobacco farmers who used Minjingu fertilizer in various primary societies (see appendix number 5).

3.0 OBJECTIVES

3.1 General objective

To assess yield and quality of tobacco produced by using Minjingu fertilizers

3.1.1 Specific objectives

- To analyse the amount of N, P, K, Ca, Mg, S, Cl and B in Minjingu Golden leaf tobacco (NPK 10:18:24) and Minjingu Top dressing fertilizer (CAN 27%)
- To assess plant growth in the field before reaping
- To determine ripening rate of tobacco leaves in the field
- To assess number of days used during curing
- To compare tobacco grades and their value for tobacco fertilized with Minjingu fertilizer versus tobacco fertilized with YARA
- To analyse the amount of nicotine, reducing sugar, N, P, K, Ca, Mg, S, Cl and B in cured tobacco leaves fertilized with Minjingu fertilizer.
- To assess the aroma of tobacco fertilized with Minjingu Golden Leaf and Minjingu top dressing fertilizer

4.0 STUDY AREA

Evaluation was done in various primary societies in Tabora urban, Uyui and Sikonge districts. Those primary societies were; Ilalwansimba, Ibelamilundi, Kigwa makazi, Kigwa kijiji, Tumaini, Mibono, Mgambo, Tumbi, Tupendane, Mkombozi and Magengati.

No.	AMCOS	Golden leaf tobacco (NPK 10:18:24) (Bags)	Minjingu Top dressing fertilizer (CAN 27%) (Bags)	Number of farmers
1	ILALWANSIMBA NA MAGIRI	294	161	49
2	KIGWA KIJIJI	360	90	60
3	KIGWA MAKAZI	459	141	63
4	MIBONO	536	134	50
5	MKOMBOZI	436	106	60
6	TUPENDANE	421	106	85
	TOTAL	2506	738	367

Table 1: Distribution of Golden leaf tobacco and Minjingu Top dressing fertilizers

As for other inputs, Minjingu fertilizers were also delivered to farmers as loan through primary societies. Some of these primary societies were having non performing loans.

Total number of primary societies under WETCU which participated in tobacco production for 2018/2019 crop season was 64 and total number of families participated was 8202. Out of 64 primary societies only 6 primary societies with 367 failies used Minjingu fertilizers. This makes 9.4% to be primary societies which used Minjingu fertilizers and 90.6% used YARA fertilizers. Also 4.5% of the farmers used Minjingu fertilizers and 95.5% of the farmers used YARA fertilizers.

5.0 MATERIALS AND METHODS

The research was conducted by assessing tobacco in the field, during curing and determing tobacco grades and their value. Furthermore, samples of fertilizers and cured tobacco leaves were taken to laboratory for analysis of nutrients

Leaf area was determined by using correction coefficient for FCV taken as **0.64** (Suggs *et al*, 1960).

 $\mathbf{A} = \mathbf{C} \times \mathbf{L} \times \mathbf{W}$

Where; (L) – Leaf length (W) –Leaf width (C) – Correction coefficient (A) – Leaf area

Furthermore, number of leaves was counted to determine the nuber of leaves left after topping-up.

Ripening rate was assessed by counting number of days taken to accomplish ripening after the previous reaping/harvest.

Leaf curing was assessed for each stage. This was done by counting number of days required to accomplish each stage. These stages were yellowing, colour fixing, leaf drying and mid-rib drying.

Dry tobacco leaves were taken to laboratory to analyse nicotine, reducing sugar, N, P, K, Ca, Mg, S, Cl and B

Analysis of tobacco grades and its value was done after cured tobacco leaves being classified. Assessment of tobacco aroma was done where orange, lemon and mahogany colour was used to determine the aroma.

6.0 RESULTS AND DISCUSSION

6.1 Nutrient analysis in Minjingu Golden Leaf Tobacco ($\rm NPK$ 10:18:24) and Minjingu top dressing CAN 27%

S/N	SAMPULI	TN-Kjeld	В	Ca	Zn	Mn	Fe	Р	Mg	TK2O	S
		%	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%
	Golden leaf										
	tobacco-	7.04	2,003.61	24.67	150.1	204.51	0.26	4.27155	5.68	21.86	0.22
1	NPK(10:18:24)										
	Minjingu top										
	dressing-	15.23	10.18	14.39	88.1	309.77	0.5	6.27	4.95	0.52	0.11
2	CAN(27%)										

Table 2: Laboratory analysis results of Minjingu fertilizers

Results in table 2 indicates laboratory analysis results of Minjingu Golden leaf tobacco (NPK 10:18:24) and Minjingu Top dressing fertilizer (CAN 27%). Results indicates that the nutrients are below standards contrary to what is indicated in Minjingu fertilizers packing bags shown in plate one

Plate 1: Minjingu NPK and CAN packing bags

6.1.1 Specifications for flue cured tobacco

NPK is 10:18:24 +0. 5Mg0+3Ca0+7S+0.012B

Specifications guidelines:

N total - 7.1% NH4

2.9% NO3

P₂O₅ total 18% Min

P₂O₅ water soluble 15.5%

 K_2O total 24% based on 75% SOP and 25% MOP

MgO total 0.5%

CaO total 3%

S total 7%

B total 0.012%

Cl content 6% maximum this is from 120kg/t MOP.

Moisture content by weight: maximum 1.0%

6.1.2 Specification for CAN 27% N as a top dressing fertilizer in flue cured tobacco

Specification guidelines; N total 26% N minimum N split 13%NH4 – N minimum 13%NO3 – N minimum MgO total 1.7% CaO total 3.0% S 3.0% Moisture content not exceed 1%

6.1.3 How Minjingu fertilizers are manufactured

Minjingu fertilizers are manufactured through blending different types of fertilizers as follows;

S/N	Type of fertilizer/nutrient	Quantity (Kg)
1	MOP	400
2	DAP	230
3	MOHP – pw	195
4	UREA	100
5	SULPHUR	70
6	BORAX	5
	Total	1000

Table 3: Manufacturing of NPK – Minjingu

(Source: Minjingu mines and Fertilizer Company)

MOP contributes to release Potasiam for 60%, DAP releases Nitrogen (N) for 18% and phosphorus (P-Industrial) for 46%

MOHP - PW, this is rock phosphate which is mined in Minjingu releases natural phosphorus for 54%

UREA is the main source of Nitrogen (N) in Minjingu fertilizers (www.minjingumines.com)

6.1.4 Source of Nitrogen in Minjingu NPK 10:18:24

UREA is not recommended as the source of nitrogen for tobacco plant nutrition due to unpredictable release of nitrogen for plant absorption (International Potash Institute, 1988)

In best soil condition ammonium is quickly converted to nitrate by decomposition of soil micro organisms. But in case this convertion is slow tobacco plant which is in high demand of nutrients can absorb high quantity of ammonium which will be toxic to plant (Robert and Gary, 1997)

It may happens convertion of UREA to NH $_4$ – N not to be completed (Partial nitrification of N) this can be toxic to plant (Elliot, 1986)

When there is low moisture content in sandy soil it takes long time for UREA to undergo decomposition from ammonium nitrogen (NH $_4$ – N) to nitrate nitrogen (NO $_3$ – N) which is absorbed by the plant. In this blending there is DAP which has ammonia nitrogen which also needs to be converted to nitrate nitrogen. This condition leads to late availability of nitrogen to plant from these sources of UREA and DAP this is due to the fact that tobacco plant absorbs nitrogen in the form of nitrate and not ammonium

Nitrogen (N) is very important in plant growth because it helps plant to synthesize its own food and absorption of other plant nutrients.

6.1.5 Source of Phosphorous (P) in Minjingu NPK 10:18:24

Rock Phosphate (MOHP – PW) is best used in the soil with high organic matter and pH below 5.5 (FAO, 1984). Tobacco is best produced in the soil with pH from 5.5 - 7.6 (International Potash Institute, 1988). Due to this reason it makes this fertilizer to be not suitable in soil with pH above 5.5 which is best for tobacco production

6.1.6 Source of Potassium (K) in Minjingu NPK 10:18:24

Muriate of Potash (MOP) which is used in blending Minjingu NPK fertilizer as the only source of Potassium (K) is not recommended because Potassium Chloride releases high amount of Cl. The amount of Cl released from this source reaches 45 - 47%, this amount is high hence its absorption could be high and toxic to plant. It can affect its growth and smoking characteristics (Vann *et al*, 2014)

6.1.7 Source of Nitrogen in (N) in minjingu top dressing CAN 27%

Minjingu top dressing fertilizer CAN 27% is manufactured by blending UREA and MOHP – PW. Since UREA is a source of nitrogen in this fertilizer, it is not recommended because

UREA has a feature of late decomposition so as to release nitrate to be absorbed by a plant (International Potash Institute, 1988)

6.2 Assessment of tobacco plant growth in the field before reaping

6.2.1 Recommended soil for tobacco production

Tobacco is best produced in sandy to loam soil (Sys *et al.* 1993). Furthermore other types of soil such as sandy, loam, clay loams to sandy clay loams can also be used in tobacco production, but it should be light, friable and freely drained.

Tobacco is also best grown in light loam soil with low organic matter, Potash, Phosphoric acid and iron. Soil with high organic matter and nitrogen produce high yield but low tobacco quality. Moreover heavy soil with water logging is not recommended in tobacco production. Tobacco is best produced in the soil with pH from 5.5 - 7.6 (International Potash Institute, 1988)

6.2.2 Reasons of Minjingu fertilizer to have good performance in loam soil (Ferralic Cambisols, Rhodic Ferralsols)

Loam soil have a property of having high organic matter content with largest percentage of N and P. Available nutrients are within exchange sites ready to be be absorbed by a plant.

Loam soils have high cation exchange capacity (CEC) hence not easy to lose nutrients through leaching. Also it has good buffering capacity thereby creating ability to replace nutrients lost in the soil after being utilized by a plant (Hodges, 2010). Nutrient removal (kg/ha in the period of tobacco growth) in order to produce 2.5 tonnes of dry leaves in the barn is: Nitrogen (N) = 50; Phosphorus (P₂O₅) = 15 and Pottassium (K₂O) = 125 (Sys *et al.* 1993).

Plate 2: Tobacco fertilized with Minjingu fertilizer in loam soil

6.2.3 Reasons of Minjingu fertilizer to have poor performance in sandy soil

Sandy soils have low organic matter hence less fertile. When Minjingu fertilizer is used in sandy soil it delays to release nutrients because of lack of exchange sites. Furthermore, in sandy soil microorganisms required to convert ammonia from UREA to nitrate and Phosphate are in less quantity because of low organic matter.

Plate 3: Tobacco fertilized with Minjingu fertilizer in sandy soil

6.2.4 Leaf length and width of tobacco leaves fertilized with Minjingu fertilizer in sandy and loam soil

Data of leaf length and width was taken from five farmers, whereby three farmers were in loam soil and two farmers were in sandy soil. The following are the results of leaf area for bottom, middle and top leaves of tobacco which were in sandy and loam soil;

Loam soil;

Bottom leaves;

Leaf area for bottom leaves was 270.61cm², 281.86cm² and 286.15cm²

Middle leaves;

Leaf area for middle leaves was 978.23cm², 881.49cm² and 829.00cm²

Top leaves;

Leaf area for top leaves was 975.56cm², 809.10cm² and 828.38cm²

Sandy soil;

Bottom leaves

Leaf area for bottom leaves was 306.07cm² and 340.83cm²

Middle leaves

Leaf area for middle leaves was 625.86cm² and 605.23cm²

Top leaves

Leaf area for top leaves was 565.26cm² and 573.97cm²

Results indicates that tobacco produced in loam soil had larger leaf area in the ratio of Medium – Thin compared to tobacco produced in sandy soil which had a ratio of Thin - Medium. 67% of the soil in primary societies which used Golden leaf tobacco fertilizer and Minjingu topdressing fertilizer was sandy soil 17.5% was loam soil and 15.5% was clay soil (See attachement number 4)

6.2.5 Number of leaves per plant

Number of leaves left after topping was counted, in sandy soil the average number of leaves left was 14 while in loam soil was 16

6.3 Ripening rate and leaf curing

6.3.1 Ripening rate

There was no difference in ripening rate for tobacco fertilized with Minjingu fertilizer and that fertilized with YARA. The ripening rate was in the average of four days for Primings, Lugs and Cutters and five days for Leaf

6.3.2 Leaf curing

There was no difference in leaf curing days for tobacco fertilized with Minjingu and that which was fertilized with YARA. It took about 7 days to cure heavy tobacco and 5 days to cure light tobacco.

6.4 Quality of grades and their prices6.4.1 Results of grade analysis – Ilalwansimba AMCOS

The following are the results of grade analysis;

Chart 1: Grade distribution versus price for Ilalwansimba AMCOS farmers who used Minjingu fertilizer

Chart number 2 indicates grade distribution versus price for Ilalwansimba AMCOS farmers who used YARA which has been used as control in this assessment.

Chart 2: Grade distribution versus price for Ilalwansimba AMCOS farmers who used YARAfertilizer

KEY;

Top quality grades – L1OF, L2OF, L3OF, L1O, L1L ,L2O L2L, L30, L3L, C1O, C1L, C2O, C2L,C3O, C3L, X1O, X1L, X2O, X2L, X3O, X3L

Fair quality grades - L4O, L4L, L4R, C4O, C4L, X4O, X4L

Low quality grades - L50, L5L, L5R, X5O, X5L, BO, BL

Poor quality grades & factored tobacco – LOV, LLV, NO, NL, LND, XOV, XLV, XNO, XNL, XJ

Chart 3: Top quality grade distribution versus weight for Ilalwansimba AMCOS farmers who used Minjingu fertilizer

Chart 4: Top quality grade distribution versus weight for Ilalwansimba AMCOS farmers who used YARA fertilizer

Grade distribution analysis results indicates that sampled bales of the tobacco fertilized with YARA had higher percentage of top quality grades which was 18.75% while sampled bales of the tobacco fertilized with Minjingu had 2.94% of top quality grades (see chart 3&4)

Grade distribution versus price analysis results indicates that sampled bales of the tobacco fertilized with YARA had tobacco grades with higher price compared with tobacco fertilized with Minjingu. Some of the grades of tobacco fertilized with YARA were L3L, L3O and C3O while those fertilized with Minjingu were C3L na X3L

The average price of the tobacco fertilized with YARA was \$1.538 while that of Minjingu was \$1.198.

Tobacco fertilized with Minjingu had higher lemon bale frequency as compared to those fertilized with YARA. This indicates that tobacco fertilized with Minjingu didn't get adequate nutrients. (See chart 1&2)

6.4.2 Results of grade analysis - Mkombozi AMCOS

Chart 5: Grade distribution versus price for Kigwa Makazi AMCOS farmers who used Minjingu fertilizer

Grade analysis results in chart 5 indicate good performance of Minjingu fertilizer in Mkombozi AMCOS. The type of soil in this primary society is loam soil which Minjingu fertilizer had better performance compared to other types of soil. The results indicate that 66.09% of the sampled bales had lemon colour, 27.83% had orange colour and 6.09% had mahogany and factored tobacco. The average price of sampled bales was \$1.417.

6.4.3 Results of grade analysis – Kigwa Makazi AMCOS

70% of the soil used for tobacco production in Kigwa is Sandy, 20% is clay and 10% is loam. Grade analysis indicates lower percentage of top to fair quality grades which was 29.1% and higher percentage of grades was of low to poor quality grades and factored tobacco which had 70.9%. Avearge price of these sampled bales for Kigwa Makazi AMCOS was \$1.385

Grade colour distribution indicates that 62.41% had lemon colour, 8.87% had orange colour and 28.72% had mahogany and other factored tobacco.

6.4.4 Results of grade analysis – Kigwa Kijiji AMCOS

Chart 7: Grade distribution versus price for Kigwa kijiji AMCOS farmers who used Minjingu fertilizer

The results indicates that 60.42% of the sampled bales had tobacco with lemon clour, kwa 4.17% had orange colour and 35.41% had tobacco with mahogany colour and factored tobacco.

Tobacco with leomon colour normally have lower price compared to tobacco with orange colour. This is due to the fact that tobacco with leom colour indicates that tobacco plants didn't get adequate nutrients to reflect high quality tobacco leaves. The average price for this tobacco was \$1.351

6.4.5 Results of grade analysis - Mibono AMCOS

Chart 8: Grade distribution versus price for Mibono AMCOS farmers who used Minjingu fertilizer

Results showed that grade with lemon colour had higher percentage 52.15% while those with orange colour had 41.10% and 6.75% had mahogany and other colours. This condition indicates that tobacco plants did not get enough nutrients during its growth.

75% of samples of grade in Mibono AMCOS were taken in farmers who grow their tobacco in loam soil and 15% grow in sandy soil. Also these farmers top dressed their tobacco using YARA fertilizer after getting negative response with Minjingu fertilizer. The average price of this tobacco was \$1.597.

6.5 Determination of nicotine, chlorine, sugar, nitrogen, phosphorus, potassium, calcium, magnesium, sulphur and boron

Samples of dry tobacco leaves were taken and sent to laboratory to determine the amount of nicotine, chlorine, sugar, nitrogen, phosphorus, potassium, calcium, magnesium, sulphur and boron

	Nicotine	Reducing	Nitrogen	Phosphoro	Calcium	Magnesiu	Sulphur	Chlorine	Boron (%)
Site	(%)	sugars %	(%)	us (%)	(%)	m (%)	(%)	(%)	
	1.55 ± 0.02	0.52 ± 0.02	2.03 ± 0.03	0.10 ± 0.00 h	3.31 ± 0.01	0.43 ± 0.01	0.65 ± 0.04	0.76 ± 0.02	6.19 ± 0.12
Ibelamilundi	b	b	а	0.10 ± 0.00 D	а	а	а	а	b
	1.82 ± 0.02	0.79 ± 0.01	1.69 ± 0.03	0.11 ± 0.00 a	3.29 ± 0.03	0.43 ± 0.01	0.70 ± 0.01	0.30 ± 0.03	8.02 ± 0.85
Magengati	а	а	b	$0.11 \pm 0.00 a$	а	а	а	b	а
Treatments									
	1.68 ± 0.04	0.63 ± 0.07	1.86 ± 0.05	0.10 ± 0.00 a	3.30 ± 0.01	0.42 ± 0.01	0.64 ± 0.03	0.50 ± 0.09	6.02 ± 0.05
Majani ya chini(X&C)	а	b	а	0.10 ± 0.00 a	а	а	а	а	b
	1.68 ± 0.08	0.67 ± 0.06	1.85 ± 0.10	0.10 ± 0.00 a	3.30 ± 0.03	0.44 ± 0.01	0.70 ± 0.03	0.56 ± 0.11	8.18 ± 0.77
Majani ya juu(L)	а	а	а	$0.10 \pm 0.00 a$	а	а	а	а	а
2 WAY ANOVA F-									
Statistic									
Site (S)	33.62***	22.68.75** *	1387.2***	6.0ns	0.45ns	0.18ns	1.44ns	239.55***	248.37***
Treatment (T)	0.00ns	60.75***	1.8ns	0.00ns	0.00ns	1.68ns	2.07ns	4.07ns	346.03***
S x T	288.00***	18.75**	202.8***	0.00ns	0.11ns	0.18ns	0.92ns	2.83ns	189.86***

 Table 4: Nutrients analysis results of dry tobacco leaves

6.5.1 Nicotine

Nicotine content for top leaves in Magengati was 1.82% which was high by 1.55% for sampled leaves in Ibelamilundi. For bottom leaves the nicotine content was 1.68% which was the same as for top leaves. There was no significant differences and the results indicates that nicotine content was below the recommended amount of nicotine for bottom leaves which ranges between 2.0-2.5% and for top leaves ranges between 3.0-3.5% (Fisher *et al.*, 2013). Low nicotine contents in dry tobacco leaves was due to the use of UREA as the source of Nitrogen which have slow release of NO³⁻ Nitrogen (International Potash Institute, 1988).

Chart 9: Results of nicotine content for bottom and top leaves in Magengati and Ibelamilundi

6.5.2 Total reducing sugar

Reducing sugar content for the two places where tobacco leaves samples were taken was 0.79% for Magengati top leaves while for Ibelamilundi top leaves was 0.52%. The results indicates that reducing sugar content for top leaves was below the recommended amount which ranges between 15.5%-20% (Fisher *et al*, 2013)

For Magengati bottom leaves reducing sugar content was 0.67% which was high compared to that of Ibelamilundi which was 0.63%. The results indicates that reducing sugar content for bottom leaves was below the recommended amount which ranges between 12% - 20% (Fisher *et al*, 2013)

Chart 10: Results of reducing sugar content for bottom and top leaves in Magengati and Ibelamilundi

6.5.3 Nitrogen

Nitrogen (N) content for top leaves was 2.03% for sampled leaves in Ibelamilundi while for sampled leaves in Magengati was 1.69%. The Nitrogen content for sampled leaves in Ibelamilundi was within recommended range for top leaves which ranges between 2.0% - 2.25% (Baker *et al.*, 2000).

Nitrogen (N) content for bottom leaves was 1.86% for sampled leaves in Ibelamilundi and 1.85% for sampled leaves in Magengati. The recommended amount of Nitrogen in bottom leaves ranges between 1.3% hadi 1.75% (Baker *et al.*, 2000).

Chart 11: Results of reducing sugar content for bottom and top leaves in Magengati and Ibelamilundi

6.5.4 Phosphorus

Phosphorus content for top leaves was 0.11% for sampled leaves in Magengati and 0.1% for sampled leaves in Ibelamilundi. For bottom leaves was 0.1% for sampled leaves in Magengati and 0.1% for sampled leaves in Ibelamilundi. The results indicate that phosphorus content was within the recorecommended amount in both top and bottom leaves. The recommended amount of phosphorus for bottom leaves is between 0.12% - 0.3% and for top leaves is between 0.14% - 0.3% (Baker *et al.*, 2000)

6.5.5 Calcium

Calcium content for top leaves was 3.31% for sampled leaves in Ibelamilundi and 3.29% for sampled leaves in Magengati. For bottom leaves the calcium content was 3.3% for both Magengati and Ibelamilundi. The results indicates that the calcium content was higher compared to the recommded amount of calcium which ranges between 1.0% - 2.5% for bottom leaves and 0.75% - 1.5% for top leaves (Baker *et al.*, 2000)

6.5.6 Magnesium

Magnesium content for top leaves was 0.43% for sampled leaves in Ibelamilundi and Magengati. For bottom leaves magnesium content was 0.44% for sampled leaves in Magengati while for Ibelamilundi was 0.42%. The results indicates that magnesium content was within the recommended range which is 0.18% - 0.75% for bottom leaves and 0.2% - 0.6% for top leaves (Baker *et al.*, 2000)

6.5.7 Sulphur

Sulphur content for top leaves was 0.7% for sampled leaves in Magengati and 0.65% for sampled leaves in Ibelamilundi. For bottom leaves sulphur content was 0.7% for sampled leaves in Magengati and 0.64% for sampled leaves in Ibelamilundi. The results indicate that sulphur content was higher compared to the recommended range. This high amount of sulphur has negative effects on aroma, combustibility, ash coulour and smoking characteristics (Deng *et al*, 2007). The recommended amount of sulphur for bottom leaves is 0.15% - 0.4% and 0.15% - 0.4% (Baker *et al.*, 2000)

6.5.8 Chlorine

Chlorine content for top leaves was 0.76% for sampled leaves in Ibelamilundi and 0.30% for sampled leaves in Magengati. For bottom leaves chlorine content was 0.56% for sampled leaves in Mgengati and 0.5% for sampled leaves in Ibelamilundi. The results indicate that the chlorine content was within the recommended range. For bottom and top leaves the recommended range is between 0.2% - 3%.

6.5.9 Boron

Boron (B) content for top leaves was 8.02% for sampled leaves in Magengati and 6.19% for sampled leaves in Ibelamilundi. Results indicate that boron content was low compared to the recommended amount. The recommended amount of boron for top leaves ranges between 18% - 30%

Boron content for bottom leaves was 8.18% for sampled leaves in Magengati and 6.02% for sampled leaves in Ibelamilundi. The boron content was low compared to the recommended range of boron in bottom leaves which ranges between 15% - 30% (Baker *et al.*, 2000)

6.6 Determination of aroma of tobacco produced by Minjingu Golden Leaf and Minjingu top dressing fertilizer

Assessment of aroma in dry tobacco leaves was done to investigate the quality of tobacco. Laboratory leaf analysis results indicates that there was high sulphur content in dry tobacco leaves which contributed to produce tobacco of poor aroma (Deng *et al*, 2007)

7.0 RESULTS OF FARMERS' OPINIONS ON THE USE OF MINJINGU FERTILIZER IN TOBACCO PRODUCTION

After farmers' interviews on the use of Minjingu fertilizer in tobacco production, data analysis was done and the following are the results;

Farmer's experience in	tobacco production	
Years	Frequency	Percent (%)
1-5	5	25.0
Above 5	15	75.0
Total	20	100.0

Table 5: Farmer's experience in tobacco production

Table number 5 above indicates that 75% of the farmers interviewed have experience of tobacco production for more than five years.

Expo	ected yield per area	
	Frequency	Percent (%)
Yes	2	10.0
No	18	90.0
Total	20	100.0

Table 6: Yield obtained by tobacco farmer for 2018/2019 crop season

Table number 6 above indicates farmers' opinions on whether they get satisfactory yield per area cultivated. The results indicates that 90% of the farmers interviewed responded that they get low yield than what they expected and 10% said they get satisfactory yield

|--|

	Frequency	Percent (%)
Bad weather	6	30.0
Inadequate nutrients	6	30.0
Failure to perform on time	1	5.0
Require high moisture content to work properly	6	30.0
Late inputs delivery	1	5.0
Total	20	100.0

Table number 7 above indicates causes of low yield tobacco. The results indicates that 30% of the farmers interviewed responded that bad weather was the cause of low yield, 30% said it was because of inadequate nutrients in Minjingu fertilizer, 5% responded that it was because of failure of Minjingu fertilizer to perfrom on time, 30% said Minjingu fertilizer require high moisture content to work properly and 5% responded that low yield tobacco was as a result of late inputs delivery.

Table 8: Farmers' opinions on appropriateness/inappropriateness of Minjingu fertilizer in tobacco production

Farmers' opinions on appropriateness/inappropriateness of Minjingu fertilizer in tobacco production					
	Frequency	Percent (%)			
Yes	4	20.0			
No	15	75.0			
Don't know	1	5.0			
Total	20	100.0			

Table number 8 above indicates farmers' opinions on appropriateness/inappropriateness of Minjingu fertilizer in tobacco production. The results indicates that 75% of the farmers interviwed responded that it is not appropriate to use Minjingu fertilizer in tobacco production while 20% it was appropriate to use Minjingu fertilizer in tobacco production.

Causes of the farmers not to prefer Minjingu fertilizer in tobacco production							
	Frequency	Percent (%)					
Does not produce orange colour after curing	3	15.0					
Late absorption by the plant	3	15.0					
Produce tobacco of low quality grades	6	30.0					
Inadequate nutrients	1	5.0					
Poor performance in sandy soil	4	20.0					
Needs high moisture content to work properly	3	15.0					
Total	20	100.0					

Table 9: Causes of the farmers to reject Minjingu fertilizer to be used in tobacco production

Table number 9 above indicates causes of the farmers to reject Minjingu fertilizer to be used in tobacco production. The results indicates the following reasons; 15% Does not produce orange colour after curing, 15% Late absorption by the plant, 30% Produce tobacco of low quality grades, 5% Inadequate nutrients, 20% Poor performance in sandy soil and 15% Needs high moisture content to work properly.

Farmers' advice for Minjingu fertilizer manufacturer							
	Frequency	Percent (%)					
Should be improved to have nutrients to satsfy tobacco plant	18	90.0					
wabadilishe mjengeko wa utengenezaji wa virutubisho vyake	1	5.0					
Should be improved to perform well in all types of soil	1	5.0					
Total	20	100.0					

Table 10: Farmers' advice for Minjingu fertilizer manufacturer

Table number 10 above indicates farmers' advice for Minjingu fertilizer manufacturer. The result indicates that, 90% responded that Minjingu fertilizer should be improved to have nutrients to satsfy tobacco plant nutrition.

Causes of the farmers to get tobacco of low quality						
		Frequency	Percent (%)			
	Inadequate nutrients	3	15.0			
	Late absorption by the plant	12	60.0			
	Shortage of barns	1	5.0			
	Inadequate rainfall	1	5.0			
	Shortage of storage facility	1	5.0			
	Total	18	90.0			
Missing	System	2	10.0			
Total		20	100.0			

 Table 11: Causes of the farmers to get tobacco of low quality

Table number 11 above indicates causes of the farmers to get tobacco of low quality. The results indicates that 15% Inadequate nutrients within Minjingu fertilizer, 60% Late absorption of Minjingu fertilizer by the plant, 5% Shortage of barns, 5% Inadequate rainfall, 5% Shortage of storage facility

Table 12.	Farmers	oninions	on im	nroving	tobacco	production
Table 12.	r ai mei s	opimons	on m	proving	lunacco	production

Farmers opinions on improving tobacco production							
	Frequency	Percent (%)					
Inputs should be delivered to farmers on time	6	30.0					
Farmers training on principles of tobacco production	1	5.0					
The quality of Minjingu fertilizer should be improved	10	50.0					
Farmers should continue to use YARA	2	10.0					
CAN ya minjingu iondolewe UREA	1	5.0					
Total	20	100.0					

Table number 12 above indicates farmers' opinions on improving tobacco production. Results indicates that; 30% Inputs should be delivered to farmers on time, 5% Farmers training on principles of tobacco production, 50% The quality of Minjingu fertilizer should be improved, 10% Farmers should continue to use YARA and 5% mbolea ya CAN ya minjingu iondolewe UREA.

Table 13: Availability of inputs on time

Availability of inputs on time						
	Frequency	Percent (%)				
No	20	100.0				

Table number 13 above indicates farmers' opinions on availability of inputs on time. Results indicates that 100% of the farmers interviewed responded that inputs are not delivered on time

8.0 CONCLUSION

- ✓ The amount of nutrients in Minjingu NPK(Golden tobacco leaf) and CAN(Top dressing fertilizer) has been observed to be low as compared to the recommended fertilizer specification for tobacco production in Tanzania
- ✓ Tobacco leaves fertilized in loam soil had greater leaf size compared to those fertilized in sandy soil.
- ✓ There was no difference in days of reaping and drying for tobacco fertilized with Minjingu fertilizer and that fertilized with YARA fertilizer.
- \checkmark High sulphur content in dry tobacco leaves have contributed to destroy the aroma of tobacco
- ✓ Tobacco fertilized with Minjingu fertilizer has produced high number of lemon grades leading to lower average price.

✓ Currently Minjingu fertilizer should not be used for tobacco production until there is improvement in recommended nutrients required by the tobacco plants so as to avoid loss to farmers.

9.0 RECOMMENDATIONS

- ✓ It is recommended that Minjingu mines and Fertilizer Company should use other sources of Nitrogen that could be readly available to plant. Ammonium nitrate is the best source of nitrogen to be used in tobacco production.
- ✓ Rock phosphate (MOHP PW) is best used in soil with high organic matter and pH below 5.5. This makes Rock Phosphate not suitable for tobacco production because tobacco grows well in pH range from 5.5 7.6. Rock phosphate have slow nutrient release especially in sandy soil hence the use of hydroxyl acids combined with calcium and iron could help to dissolve organic phosphorous to enhance phosphate to be readly available to plant.
- ✓ Muriate of Potash (MOP) used in blending minjingu NPK as the only source of Potassium (K) is not recommended because Potassium Chloride release high amount of chlorine (Cl). The amount of chlorine released from this source of Potasium chloride ranges between 45 47%. This amount is toxic to tobacco plant and it is not recommended because it destroys smoking characteristics, growth and quality of tobacco leaves. Hence MOP is best blended with other sources of Potassium fertilizers for the ratio that could reduce the amount of Cl in the fertilizer. It is recommended that the amount of chlorine released should not exceed 13.61 per acre. Good source of Potassium is sulphate of potash (SOP) because contains no Chloride and hence has much lower salt index also K-Mag (Sul-Po-Mag) is prefered because it release enough amount of Magnesium 11% and Sulfur 22% while releasing very little amount of Cl which is below 2.5%. Other recommended source of K is Potassium Nitrate.
- ✓ In manufacturing NPK and CAN fertilizers for tobacco production it is very important to consider proper nutrients recommended for tobacco production in Tanzania. This advice has also been delivered in the previous research report of 2017/18 crop season (evaluation of Minjingu NPK 10:18:24 and CAN 27% in Tabora, Kahama, Urambo and Chunya released 30th April, 2018).

REFERENCES:

- Elliot, G.C. (1986). Urea hydrolysis in potting media. *Journal of the American Society of Horticulture Science*. Vol. 111, pp. 862-866.
- FAO, (1976). A framework for land evaluation. FAO Soils bulletin 32. FAO-Rome, Italy. 66pp
- FAO, (1983). Guidelines: land evaluation for rainfed agriculture. FAO soils bulletin 52. Food and agriculture Organization of the United Nations, Rome. 237pp
- FAO, (1990). Soil map of the world. Revised Legend. World Soil Resources Report 60. Reprinted.
 Prepared by the food and Agriculture Organization of the United Nations. (FAO). United Nations Educational, Scientific and Cultural Organization (UNESCO). International Soil Reference and Information Centre (ISRIC).
- International potash Institute, (1988). Fertilizing for high quality and yield tobacco. Technical department SCPA, Paris, France. 52pp
- Mathew, V., Loren, F. and David, S. (2014). Availability of Potassium Sulphate for the 2014 Tobacco Growing Season. Depatment of soil science, NC State University
- Robert, C.P. and Gary, K.P. (1997). Nitrogen source effects on the growth and development of burley tobacco. University of Kentuky. United States of America. 11pp.
- Steven, C. H. (2010). Soil fertility basics. Soil science extension, North Carolina state university. [Https://:www.minjingumines.com . Cited on 7th May 2019]

- Suggs, C.W., Beeman, J.F and Splinter, W.E. (1960). Physical properties of green Virginia tobacco leaves Part III. Relation of leaf length and width to leaf area. *Tobacco Science Journal 4*: 194 – 197
- Sys, C., Van Ranst, E., Debaveye, J and Beernaert, F. (1993). Land evaluation: Part III crop requirements. Agricultural Publications No 7. Brussels Belgium. 104pp
- Blake, B., Hugh, C., Gary, B., Jonathan, P., Grant, E., Loren R.F and Janet, F. (2013). Flue cured tobacco guide. North Carolina extension service. Raleigh, North Carolina. 214pp.
- Deng, X.H., Zhou, J.H., Zhao, S.Y., Yang, H.Q, Li, X.Z., Zhang, Y.Y., Chen, X.L and Zhu, L.S. (2007). Regional characteristics of sulphur contents in flue cured tobacco leaf in yunnan province and their influence to smoking quality.
- Baker, W.H., Bell, P.F., Campbell, C.R., Cox, F.R., Donohue, S.J., Gascho G.J and Hanlon, E.A. (2000). Reference sufficiency ranges for plant analysis in the southern region of the united states. North Carolina Department of Agriculture and consumer services. Raleigh, North Carolina. 134pp.

No.	District	Ward	Village	Sand soil (Kichanga)" <i>Isenga</i> "	Kichanga chekundu" <i>Kikung</i> u) (%)	Clay soil (Manda) (%)
				(%)		
1	Kaliua	Kaliua	Kasungu	43	42	15
2	Kaliua	Kamsek wa	Kamsekwa	70	20	10
3	Kaliua	Kanindo	Kanindo	75	20	5
4	Kaliua	Mwongo zo	Ibambo	30	50	20
5	Nzega	Puge	Upungu	90	5	5
6	Nzega	Magenga ti	Usagali	80	15	5
7	Nzega	Milambo Itobo	Kakulungu	60	35	15
8	Nzega	Milambo Itobo	Malole	70	10	20
9	Nzega	Mambali	Mambali	50	50	0
10	Nzega	Mambali	Mbutu	70	30	0
11	Nzega	Ikindwa	Kayombo	75	15	15
12	Nzega	Ikindwa	Malolo	75	25	0
13	Uyui	Magiri	Mayombo	25	50	25
14	Uyui	Magiri	Magiri	75	10	15
15	Uyui	Magiri	Imalampaka	75	10	15
16	Uyui	Isikizya	Ilalwansimba	80	15	5

Appendix 1: Types of soil used for tobacco production in Tabora region

			Average (%)	63	25	12
			Total	2463	986	466
39	Urambo	Vumilia	Motomoto	70	20	10
38	Urambo	Ukonda moyo	Ukondamoyo	73	27	0
37	Urambo	Usisya	Katunguru	50	30	20
36	Urambo	Uyumbu	Ussoke mlimani	80	2	18
35	Tabora	Ntalikwa	Ntalikwa	70	25	5
34	Tabora	Tumbi	Tumbi	60	20	20
33	Sikonge	Kitunda	Mgambo	55	30	15
32	Sikonge	Ipole	Udongo	60	30	10
31	Sikonge	Kipanga	Ukondamoyo	75	20	5
30	Sikonge	Kisanga	Kisanga	5	75	20
29	Sikonge	Mole	Mole	65	20	15
28	Uyui	Igalula	Igalula	75	25	0
27	Uyui	Ibiri	Ibiri	60	10	30
26	Uyui	Ufuluma	Ufuluma	80	10	10
25	Uyui	Ndono	Ndono	82	15	3
24	Uyui	Mabama	Mabama	75	10	15
23	Uyui	Ilolangul u	Mpenge	80	0	20
22	Uyui	Ilolangul u	Isila	55	25	20
21	Uyui	Bukumbi	Mbeya	0	80	20
20	Uyui	Bukumbi	Ishihimulwa	80	20	0
19	Uyui	Kigwa	Itundaukulu	70	30	0
18	Uyui	Kigwa	Kigwa	70	10	20
17	Uyui	Isikizya	Igoko	30	50	20

Source: Evaluation of soil status in tobacco growing regions (Gama et. al, 2014)

Farmer	Entr	Bottom leaves		Middle leaves		Top leaves		Leaf area		
I(Kikungu)	У	(cm)	Widt	(cm)	Widt	(cm)	Widt	Bottom	Middle	Тор
		Length	h	Length	h	Length	h	leaves	leaves	leaves
	1	28	16.4	56.5	28.6	63.1	27.2	270.613	978.231	975.56
	2	32.4	17	52	23.4	59.7	20.7			
	3	32.3	20.4	53.6	28.8	58.2	20.2			
	4	30.4	14.8	54.4	26.1	60	25.3			
	5	26.2	13	59.5	32.2	61.2	31.3			
	6	31.5	14.5	55.3	31.2	58.2	26.1			
	7	22.4	11.2	52.4	24.5	62.1	27.8			
	8	25	15.3	58.2	20	51.2	21.5			
	9	26.1	13.2	57.5	28.8	63.4	32.3			
	10	29.1	13.4	52.4	33.4	59.5	23.1			
		28.34	14.9 2	55.18	27.7	59.66	25.5 5			
Farmer 2(Kikungu)	1	34	17.3	51.4	29.2	61	22.3	281.863	881.491	809.105
	2	30.5	16.4	49.5	20	58.3	17.1			
	3	28.2	13	57.6	34.4	50.3	20.7			
	4	27	13.4	50	25.5	60.3	22			
	5	32.4	18	51.2	22.5	62.1	23.2			
	6	32.1	15.2	53.4	24.3	55.6	20.2			
	7	24	11.4	58.3	28	59.3	25.1			
	8	27.2	15.3	54.5	29.8	53.1	21.3			
	9	33	19.5	55.2	26.8	57.8	18.4			
	10	22.3	12	45	21.3	60	28.5			
		29.07	15.1 5	52.61	26.1 8	57.78	21.8 8			
Farmer 3(Kikungu)	1	30.2	13.5	51.2	19	50.1	28.3	286.148	829.008	828.376
	2	36.7	18.6	45.2	26.3	55.2	27.2			
	3	28	15	51	22.5	61.3	28.6			
	4	34.6	20.4	53.1	28.6	53.2	18.3			
	5	30.3	16	57.2	24.5	60.1	22.3			
	6	26	12	44.5	26	57.6	22.7			

Appendix 2: Leaf area for tobacco produced in sand and loam soil

	1									
	7	31.4	16	43.3	19.5	54.4	19.5			
	8	34.3	18.2	54.5	24.2	53	22.1			
	9	21.2	10	52.4	35.5	58.3	18.3			
	10	20.1	13	52.6	30.4	59.8	22.6			
		20.28	15.2	50.5	25.6	56.3	22.9			
Farmer		27.20	,	50.5	5	50.5	,			
4(Kichanga)	1	29.2	18.5	43.2	22.5	39.8	20.3	306.067	625.856	565.258
	2	30	19	44.6	21.5	41.8	19.6			
	3	29.5	17.4	40.5	25.5	39.6	21.7			
	4	27.6	19	41.7	24.4	41.4	21.4			
	5	29.7	16.2	42.5	20.5	49.4	19.9			
	6	28.5	17.4	44.8	22.4	47.6	21.5			
	7	29.4	17.2	43.4	23.2	42.8	20.2			
	8	26	14	40.8	25.6	43.4	19.6			
	9	29.9	14.8	41.7	24.9	42.5	20.5			
	10	25.2	14.3	40.5	20.3	39.2	21.9			
			16.7		23.0		20.6			
		28.5	8	42.37	8	42.75	6			
Farmer 5 (Kichanga)	1	31.2	17.9	43.7	22	48.1	14.2	340.826	605.247	573.969
_	2	30.4	14.5	45.1	19.2	51.8	27.5			
	3	30.2	26	43.3	16	42.2	17.1			
	4	29.4	14.5	58.2	21.3	42.3	14			
	5	30.3	20	44.9	22.1	50	18.2			
	6	28.6	13.2	53.2	24	50.2	16.5			
	7	29.5	22	50	21.3	51	23.2			
	8	29.9	19.8	42.2	18.4	51.2	21			
	9	24.3	17.6	48.5	21.5	43	16.2			
	10	31.4	14.9	42.1	14.9	50.3	18.9			
			18.0		20.0		18.6			
		29.52	4	47.12	7	48.01	8			

Average (%)		67	17.5	15.5
10	Tumaini	65	20	15
9	Kitunda	55	30	15
8	Tupendane	60	10	30
7	Mkombozi	60	10	30
6	Tumbi	60	20	20
5	Mibono	60	30	10
4	Magengati	80	15	5
3	Ibelamilundi	80	15	5
2	Kigwa Kijijij & Makazi	70	10	20
1	Ilalwansimba	80	15	5
N0.	AMCOS	Sand (%)	Loam (%)	Clay (%)

Appendix 3: Types of soil in primary societies which used Minjingu fertilizer

Appendix 4: Grade prices for 2018-219 crop season

Macronutrients	(%)										
Growth stage	Tissue	Ν	Р	K		Ca		Mg		S	
Seedling	MRML	4.0 - 6.0	0.2 - 0.5	3.0	- 4.0	0.6-1.5		0.2-0.6		0.15-0.6	
Early growth	MRML	4.0 - 5.0	0.2 - 0.5	2.5	- 3.5	0.75-1.5	5	0.2-0.6		0.15-0.6	
Flowering	MRML	3.5 - 4.5	0.2 - 0.5	2.5	- 3.5	0.75-1.5	5	0.2-0.6		0.15-0.6	
Maturity	MRML	2.25 - 3.0	0.17-0.5	1.6	-3.0	0.75-1.5	5	0.2-0.6		0.15-0.6	
Harvest	Upper leaf	2.0 - 2.25	0.14-0.3	1.5	-2.5	0.75-1.5	5	0.2-0.6		0.15-0.4	
Harvest	Middle	1.6 - 2.0	0.13- 0.3	1.5	-2.5	1.0-2.0		0.2-0.6		0.15-0.4	
	leaf										
Harvest	Lower leaf	1.3 - 1.75	0.12-0.3	1.3	-2.5	1.0-2.5		0.18-0.75		0.15-0.4	
Micronutrients ((ppm)										
Growth stage	Tissue	Fe	Mn		Zn		(Cu	F	3	
Seedling	MRML	50-300	20-250		20-60)	5	5-10	1	8-75	
Early growth	MRML	50-300	20-250		20-60)	5	5-10	1	8-75	
Flowering	MRML	50-300	20-250		20-60		5-10		18-75		
Maturity	MRML	50-300	20-250	20-250		20-60		5-10		18-75	
Harvest	Upper leaf	40-200	20-350		18-60) :		5-10		18-30	
Harvest	Middle	40-200	20-350	20-350)	4-10		18-30		
	leaf										
Harvest	Lower leaf	40-200	18-350		18-60)	3	3-10	1	5-30	

Appendix 5: Sufficiency ranges for macro and micro nutrients in flue cured tobacco leaves

Source: Southern Cooperative Series Bulletin (SCSB)

Appendix 6: Dry tobacco leaves analysis results

<image/> Source of the second secon		SOKOINE UNIVERSIT FACULTY OF AGRICU DEPARTMENT OF FOOD THE P.O. Box 3006, MOROGO	Y OF AGRIC	ULTURE							
FACULTY OF AGRICULTURE DEPARTMENT OF FOOD TECHNOLOGY, NUTRITION AND CONSUMER SCIENCES DA 3006. MOROGOGO – TANZANIA TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-22 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0232 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0392 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0392 - 604402 OR 0232 - 603511 - 8 EXT. 4119-23 TELESA 0392 - 6 EXT. 4119-24 TELESA 0392 - 7 EXT. 4119-24 TELESA 0		FACULTY OF AGRICU DEPARTMENT OF FOOD TEK P.O. Box 3006, MOROGO	LTURE								
<image/> EVENT Prevertee to pood technology, NUTRITION AND CONSUMER SCIENCES Prevertee to pool of the		DEPARTMENT OF FOOD TE	FACULTY OF AGRICULTURE								
 P.O. Box 3006. MOROGORO – TANZANIA ELEFAX 0232 – 604402 OR 0232 - 603511 - 4 EXT. 419-23 ELEGAAMS: UNIAGRIC - TELEX: 55308. E-mail:fsr@sun.act. Marce: Samples Costomer: Tabora Tobaco Taboratory Tobaco analysis results: <u>NN PARAMETERS ANALYSED INVIN 17855 18000 0.4766 0.5546</u> <u>1 Nitrogen(N) % 1.7855 18000 0.4766 0.5546</u> <u>1 Nitrogen(N) % 1.7855 1.8000 0.4766 0.5546</u> <u>1 Nitrogen(N) % 1.7855 1.8000 0.4766 0.5546</u> <u>1 Nitrogen(N) % 1.7852 0.8000 0.4766 0.5546</u> <u>1 Nitrogen(N) % 1.7852 0.8000 0.4766 0.5546</u> <u>1 Otal reducing sugar (%) 0.11390 0.10713 0.08914 0.0977</u> <u>1 Calcium(Mg) µg/g 4.29960 4.427.30 4.20950 4.33101.22</u> <u>6 Magnesium(Mg) µg/g 4.29961 2.33,041.60 33,187.50 33,101.22</u> <u>6 Magnesium(Mg) µg/g 4.29960 0.4127.30 4.20950 4.3398.66</u> <u>7 Sulphur(S) % 0.6930 0.7140 0.5990 0.6697</u> <u>9 Boron(B) ppm 6.1390 0.6900 5.9147 0.4665</u> <u>9 Boron(B) ppm 6.1390 0.6900 5.9147 0.4665</u> <u>9 Boron(B) ppm 0.61390 0.6900 5.9147 0.4665</u> <u>1 Ortantrum 0.9.867 3005 MGR.ccu.under</u> <u>1 Department 0.9.867 3005 MGR.ccu.under</u> <u>1 Depart 1.9.867 3005</u>	Les les	P.O. Box 3006, MOROGO	CHNOLOGY, N	UTRITION AND	ONSUMER SCH	ENCES					
Wire Provided by Provid		FULDOX SUUD, MURUCU	PO TANZ	NIA							
TELEGRAMS: UNIAGRIC - TELEX: 55308. E-mail:fst@sun.ac.tz Date: 14th June 2019 Our Ref.:Samples Date: 14th June 2019 CUSTOMER: Tabora Tobacco Laboratory Tobacco analysis results : SAMPLE NAMES Nicotine content % 1.7855 AMPLE NAMES SAMPLE NAMES Samples Date: 14th June 2019 Sample NAMES Name: Isak		TEL/EAX 0232 - 60440	2 OR 0232 - 6	03511- 4 EXT.	4419-22						
Our Ref.:Samples CUSTOMER:Tabora Tobacco Date: 14th 2005 Laboratory Tobaco analysis results ;		TELEGRAMS: UNIAGE	RIC - TELEN	: 55308. E-mai	l:fst@sua.ac.t	z					
Our Ref.:Samples Date: 14 ^a June 2019 CUSTOMER:Tabora Tobacco Laboratory Tobacco analysis results ; S/N PARAMETERS ANALYSED IMIM UPLM IMIN 5 1 Nicotine content % 1.7855 1.8002 1.599 2 Total reducing sugar (%) 0.7827 0.8000 0.4762 0.544 3 Nitrogen(N) % 1.7610 1.6176 1.9705 2.099 4 phosphorus(P) % 0.11390 0.10713 0.8914 0.097 5 Calcium(Ca) µg/g 32961.2 33,041.60 33,187.50 33,101.2 6 Magnesium(Mg) µg/g 4.299.60 4.427.30 4.209.50 4.398.6 7 Sulphur(S) % 0.6930 0.7140 0.5990 0.692 8 Chlorine(CI) % 0.2964 0.3117 0.7129 0.817 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.462 0FPARTMENT OF CORD TECHNOLOGY DIPARTMENT OF CORD TECHNOLOGY DIPARTMENT OF CORD UNIVERINCENT DIPARTMENT OF CORD UNIVERINGEN											
CUSTOMER:Tabora Tobacco Laboratory Tobacco analysis results ; S/N PARAMETERS ANALYSED LWLM UPLM LWLS UPLS 1 Nicotine content % 1.7855 1.8602 1.5999 1.513 2 Total reducing sugar (%) 0.7827 0.8000 0.4762 0.544 3 Nitrogen(N) % 1.7610 1.6176 1.9705 2.099 4 phosphorus(P) % 0.11390 0.10713 0.08914 0.097 5 Calcium(Ca) µg/g 3299.60 4.427.30 4.209.50 4.3187.50 33.101.2 6 Magnesium(Mg) µg/g 4.299.60 4.327.30 4.209.50 4.398.6 7 Sulphur(S) % 0.6930 0.7140 0.5990 0.699 0.699 8 Chlorine(Cl) % 0.2964 0.3117 0.7129 0.817 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.465 0FPARTURENT OF COPO TECHNOLOGY NUTATION AND CONSUMER SCIENTION 0.5000 M.CUTURE <td< td=""><td>Our Ref.:Sa</td><td>mples</td><td></td><td></td><td>Date: 14</td><td>" June 2019</td></td<>	Our Ref.:Sa	mples			Date: 14	" June 2019					
Laboratory Tobacco analysis results : S/N PARAMETERS ANALYSED LWLM LWLS UPLS 1 Nicotine content % 1.7855 1.8602 1.5999 1.513 2 Total reducing sugar (%) 0.7827 0.8000 0.4762 0.548 3 Nitrogen(N) % 1.7610 1.6176 1.9705 2.099 4 phosphorus(P) % 0.11390 0.10713 0.08914 0.0977 5 Calcium(Ca) µg/g 3.2951.2 33,041.60 33,187.50 33,101.2 6 Magnesium(Mg) µg/g 4,29.60 4,427.30 4,209.50 4,398.6 7 Sulphur(S) % 0.2964 0.3117 0.7129 0.811 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.461 OPERATERS ANALYSED Name: Isaka G. Barongereje Signature:	CUSTOMER:T	abora Tobacco									
S/N PARAMETERS ANALYSED LWLM UPLM LWLS UPLS 1 Nicotine content % 1.7855 1.8602 1.5999 1.513 2 Total reducing sugar (%) 0.7827 0.8000 0.4762 0.544 3 Nitrogen(N) % 0.17807 0.8000 0.4762 0.544 4 phosphorus(P) % 0.11390 0.10713 0.08914 0.0977 5 Calcium(Ca) µg/g 32961.2 33,041.60 33,187.50 33,101.2 6 Magnesium(Mg) µg/g 4,299.60 4,427.30 4,209.50 4,398.66 7 Sulphur(S) % 0.6930 0.7140 0.5990 0.699 8 Chlorine(Cl) % 0.2964 0.3117 0.7129 0.817 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.461 9 Boron(B) ppm 0.9057 0.9057 0.9057 0.9057 9 Boron(B) ppm 0.9057 0.9057 0.9000 5.9147 6.461	Laboratory	Tobacco analysis results ; SAMPLE NAMES									
1 Nicotine content % 1.7855 1.8602 1.5999 1.511 2 Total reducing sugar (%) 0.7827 0.8000 0.4762 0.548 3 Nitrogen(N) % 1.7610 1.6176 1.9705 2.099 4 phosphorus(P) % 0.11390 0.10713 0.08914 0.097 5 Calcium(Ca) µg/g 32961.2 33,041.60 33,187.50 33,101.2 6 Magnesium(Mg) µg/g 4.299.60 4.427.30 4.209.0 4.398.6 6 7 Sulphur(S) % 0.2964 0.3117 0.7129 0.817 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.467 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.467 9 Boron(B) ppm 6.3900 7.000 TECHNOLOGY: 9.900 9.900 9 Openarite Openarite Openarite 9.900 9.900 9.900 9 0.900 0.900 0.900 9.900 9.900	S/N	PARAMETERS ANALYSED	INVEN	UPLM	LWLS	UPLS					
2 Interference Interference 0.7827 0.8000 0.4762 0.543 3 Nitrogen(N) % 1.7610 1.6176 1.9705 2.099 4 phosphorus(P) % 0.11390 0.10713 0.08914 0.0971 5 Calcium(Ca) µg/g 32950.2 33,041.60 33,187.50 33,101.2 6 Magnesium(Mg) µg/g 4.299.60 4,427.30 4,209.50 4,398.6 7 Sulphur(S) % 0.6930 0.7140 0.5990 0.693 8 Chlorine(Cl) % 0.2964 0.3117 0.7129 0.811 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.465 Prepared by Name: Isaka G. Barongereje Signature: From Toro Consumer Sciences From Toro Sciences DFPARTMENT OF COOD TECHNOLOGGI, INVERSION AND OF AGRICUITURE O.900 NO FROM Sciences Sciences	1	Nicotine content %	1.7855	1.8602	1.5999	1.513					
3 Nitrogen(N) % 1.7610 1.6176 1.9705 2.099 4 phosphorus(P) % 0.11390 0.00713 0.08914 0.097. 5 Calcium(Ca) µg/g 32961.2 33,041.60 33,187.50 33,101.2 6 Magnesium(Mg) µg/g 4,299.60 4,427.30 4,209.50 4,398.6 7 Sulphur(S) % 0.6930 0.7140 0.5990 0.699 8 Chlorine(Cl) % 0.2964 0.3117 0.7129 0.811 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.465 Prepared by Name: Isaka G. Barongereje Signature: Chlorine Constructs Other Constructs DFPARTMAN OF CONSTREACT Signature: Construction of the constructs Signature: Constructs 0.8000 Rescience Signature: Constructs Signature: Constructs	2	Total reducing sugar (%)	0.7827	0.8000	0.4762	0.548					
4 phosphorus(P) % 0.11390 0.00713 0.08914 0.0097 5 Calcium(Ca) µg/g 32961.2 33,041.60 33,187.50 33,101.2 6 Magnesium(Mg) µg/g 4,299.60 4,427.30 4,209.50 4,398.6 7 Sulphur(S) % 0.6930 0.7140 0.5990 0.693 8 Chlorine(Cl) % 0.2964 0.3117 0.7129 0.817 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.467 Prepared by Name: Isaka G. Barongereje Signature: Colspan of AGR(CUTURE) 0.903 Of AGR(CUTURE) 0FPARTIAENT OF CORD TECHNOLOGIC: NUTRITION AND CONSUMER SCIENCES 0.903 AGR(CUTURE) 0FPARTIAENT OF CORD TECHNOLOGIC: NUTRITION AND CONSUMER SCIENCES 0.903 AGR CUTURE) NUTRITION AND CONSUMER SCIENCES NOROGORO, TANZANIA SONOINE UNIVERSION TO AGR COLOUTURE)	3	Nitrogen(N) %	1.7610	1.6176	1.9705	2.096					
5 Calcium(Ca) μg/g 32961.2 33,041.60 33,187.50 33,101.2 6 Magnesium(Mg) μg/g 4.299.60 4,427.30 4,209.50 4,398.6 7 Sulphur(S) % 0.6930 0.7140 0.5990 0.693 8 Chlorine(Cl) % 0.2964 0.3117 0.7129 0.817 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.457 Prepared by Signature: Coll Summer Sciences Operation of Coll Summer Sciences Sciences 0 Dear With No Coll Summer Sciences Signature: Coll Summer Sciences Sciences 0 Sonon X of Agenci Culture No Rogono, TMZANIA Sciences Sciences	4	phosphorus(P) %	0.11390	0.10713	0.08914	0.0973					
6 Magnesium(Mg) μg/g 4,299.60 4,427.30 4,209.50 4,398.6 7 Sulphur(S) % 0.6930 0.7140 0.5990 0.691 8 Chlorine(Cl) % 0.2964 0.3117 0.7129 0.817 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.461 Prepared by Name: Isaka G. Barongereje Signature: Chiosoft (Curve) Or food Technolog(S) Or food Technolog(S) DFPARTMENT OF food Technolog(S) Of Agriculture Of Agriculture Magnesic (Curve) Of Agriculture Norme: Isaka G. Barongereje Signature: Curve food Technolog(S) Magnesic (Curve) Magnesic (Curve) OFPARTMENT OF food Technolog(S) Magnesic (Curve) Magnesic (Curve) Magnesic (Curve) Magnesic (Curve) Soko NG GGRO, MNR MARGO, TANIA Soko NG Agriculture Magnesic (Curve) Magnesic (Curve) Magnesic (Curve)	5	Calcium(Ca) µg/g	32961.2	33,041.60	33,187.50	33,101.2					
7 Sulphur(S) % 0.6930 0.7140 0.5990 0.693 8 Chtorine(CI) % 0.2964 0.3117 0.7129 0.817 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.467 Prepared by Signature: Chtorine(SUNCES) 0.5000 5.9147 6.467 DEPARTMANN OF DOOD TECHNOLOGY. DEPARTMANN OF DOOD TECHNOLOGY. 0.0000 5.9147 6.467 DEPARTMANN OF DOOD TECHNOLOGY. DEPARTMANN OF DOOD TECHNOLOGY. 0.0000 5.9147 6.467 DEPARTMANN OF DOOD TECHNOLOGY. DEPARTMANN OF DOOD TECHNOLOGY. 0.0000 5.9147 6.467 DEPARTMANN OF NOOD TECHNOLOGY. DEPARTMANN OF DOOD TECHNOLOGY. 0.0000 5.9147 6.467 DEPARTMANN OF NOOD TECHNOLOGY. DEPARTMANN OF DOOT TECHNOLOGY. 0.0000 5.9147 6.467 DEPARTMANN OF NOOD TECHNOLOGY. DEPARTMANN OF DOOT TECHNOLOGY. 0.00000 5.9147 6.467 DEPARTMANN OF NOOD TECHNOLOGY. DEPARTMANN OF DOOT TECHNOLOGY. 0.000000 5.9147 0.00000 SOKOINE UNIVERSITY OF NOOD TECHNOLOGY.	6	Magnesium(Mg) µg/g	4,299.60	4,427.30	4,209.50	4,398.6					
8 Chlorine(Cl) % 0.2964 0.3117 0.7129 0.817 9 Boron(B) ppm 6.1390 6.9000 5.9147 6.461 Prepared by Name: Isaka G. Barongereje Signature: Colspan="2">Colspan="2" Colspan="2" Not Retring Colspan<	7	Sulphur(5) %	0.6930	0.7140	0.5990	0.691					
9 Boron(B) ppm 6.1390 6.9000 5.9147 6.46, Prepared by Name: Isaka G. Barongereje Signature: Correction of the construction of the c	8	Chlorine(Cl) %	0.2964	0.3117	0.7129	0.817					
Prepared by Name: Isaka G. Barongereje Signature: DFPARTMENT OF FOOD TECHNOLOGIC: DFPARTMENT OF FOOD TECHNOLOGIC: NUTRITION AND CONSUMER SCIENCES NUTRITION AND CONSUMER SCIENCES SOKOINE UNIVERSITY OF FOOD TECHNOLOGIC: NOROGORO, TANZANIA	9	Boron(B) ppm	6.1390	6.9000	5.9147	6.467					
SOKOINE OROGONO			NT OF FOOD	RSCIENT							
		DEPARTIM	P. O. BOX 300	AGRICULTURE							
		OFPARTM NUTRITIC	EUNIVERSITY OF	AGRICULTURE							
		DEPARTIN NUTRITIC SOKOIN	N AND CO. BOX 3000 P.O. BOX 3000 J. E. UNIVERSITY OF J. MOROGORO, TAY	AGRICULTURE							
		DEPARTIN NUTRITIC SOKOIN	ON AND CON 300 P. O. Box 300 P. D. D. Box 300 P. D.	AGRICULTUNC							
		DEPARTIN NUTRITIC SOKOIN	DN AND CORY 300 P. O. Box 300 IE UNIVERSITY OF MOROGORO, TAI	AGRICULTUNC NZANIA							
		DEDARTIN NUTRITIC SOKOIN	DN AND COX 300 P. O. Box 300 F. E. UNIVERSITY OF IE UNIVERSITY OF MOROGORO, TA	AGRICULTUNC							
		DEPARTIN NUTRITIC SOKOIN	ND CON AND CON 3000 NO CONTROL IE UNIVERSITY OF MOROGORO, TA	AGRICUTURE VZANIA							
		DEPARTIN NUTRITIC SOKOIN	AND C. BOX 3000 AND C. BOX 3000 ALC UNIVERSITY OF MOROGORO, TA	AGRICULTUNC VZANIA							
		DEPARTIN NUTRITIC SOKOIN	NA AND C. BOX 3000 P.D. DAX 3000 ALC UNIVERSITY OF MOROGORO, TA	AGRICULTUNC NZANIA							
		DEPARTIN NUTRITIC SOKOIN	NO AND CAS 3000 P. O. BOX 3000 THE UNIVERSITY OF MOROGORO, TA	AGRICULTUNC							
		DEPARTIN NUTRITIC	NO ROAD AND CONTROL NO CONTROL IE UNIVERSITY OF MOROGORO, TA	AGRICULTUNC VZANIA							
		DEPARTIN NUTRITIC	NA AND CAR 3000 NA AND CAR 3000 IE UNIVERSITY OF MOROGORO, TA	AGRICULTUNC VZANIA							
		SOKOIN	NO AND CAS 3000 P. O. BOX 3000 THE UNIVERSITY OF MOROGORO, TA	AGRICULTUNC							

Appendix 7: Minjingu fertilizer laboratory analysis results

SOKOINE UNIVERSITY OF AGRICULTURE COLLEGE OF AGRICULTURE DEPARTMENT OF SOIL AND GEOLOGICAL SCIENCES P.O. Box 3008, MOROGORO Mob: +255 754995937 Email: soillab@suanet.ac.tz FERTILIZER ANALYSIS DATA SHEET

Date 18.6.2019

B

NAME OF CLIENT/SAMPLE (TOBACCO

SN	FIELD REF.	LAB	TN-Kjeld	В	Cu	Zn	Mn	Fe	Р	Mg	TK ₂ O	S
		No.	%	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	%
1	CMM 1	F/38	15.23	10.18	14.39	88.1	309.77	0.50	6.27	4.95	0.52	0.11
2	CM72	F/39	27.03	0.33	8.79	80.0	204.51	0.35	4.50	3.51	0.34	0.07
2	NIMM 3	F/40	7.04	2,003.61	24.67	150.1	204.51	0.26	4.27155	5.68	21.86	0.22
3	NIN174	F/41	7.64	4,105.42	18.13	103.5	189.47	0.29	4.46628	3.04	18.21	0.18
4	NMZ4	F/42	2.71	15.11	4.11	5.4	63.31	0.05	0.7311	15.09	0.06	0.10
5	YR 5	F/43	6.99	299.18	4.11	122.7	219.55	0.16	0.04	9.72	11.95	5.86

Technician Incharge

For Department of Soil Science